
Velociraptor
Release 4.1

Mar 18, 2019

Contents

1 Overview 3

2 Balancers 5

3 Builder 11

4 Containers 15

5 Runners 17

6 Stacks 21

7 Supervisor is Awesome 25

8 Uptests 27

9 Volumes 29

10 Deploying Velociraptor 31

11 Administration 33

12 Development 37

13 Indices and tables 43

i

ii

Velociraptor, Release 4.1

Open-source Platform as a Service (Paas).

Contents 1

Velociraptor, Release 4.1

2 Contents

CHAPTER 1

Overview

Velociraptor (VR) seeks to create repeatable deployments by technical and non-technical users across a suite of lan-
guages, providing the service commonly knows as Platform as a Service or PaaS.

VR is inspired by Heroku and in particular the 12-factor methodology. VR supports the use of buildpacks for flexible,
pluggable building of source code into apps suitable for deployment into Linux containers (lxc).

1.1 Getting Started

In September 2015, Jason presented Velociraptor to DCPython. It’s long (45 minutes!) but provides an overview of
what VR is and how it works.

Alternatively, view the presentation slides (PDF) for an outline of the talk.

3

https://heroku.com
http://12factor.net
https://www.youtube.com/watch?v=ktaF-2o-ZZA
_static/Presentation.key

Velociraptor, Release 4.1

4 Chapter 1. Overview

CHAPTER 2

Balancers

Velociraptor has the ability keep your load balancer configuration up to date as nodes come and go on different hosts
and ports. This is done through Velociraptor’s “balancer” interface. When you define a Swarm you have the option
to pick a pool name and balancer for routing traffic to that swarm. The list of available balancers is configured in the
Django settings:

BALANCERS = {
'default': {

'BACKEND': 'vr.common.balancer.dummy.DummyBalancer',
}

}

In the above example, a balancer named “default” is configured, by setting the BACKEND parameter to the dotted-
path location of the DummyBalancer class in the Python path. The no-op “dummy” balancer doesn’t actually route
anything. It just stubs out the balancer methods for running in tests and development. Besides the dummy balancer,
there are several real balancer backends available. The rest of the configuration examples use YAML, as you would
use if you deploy Velociraptor itself from Velociraptor.

2.1 Nginx

The nginx balancer backend can be configured like so:

BALANCERS:
my_nginx_balancer:
BACKEND: vr.common.balancer.nginx.NginxBalancer
user: some_user_with_sudo
password: some_password
include_dir: /etc/nginx/sites-enabled/
reload_cmd: /etc/init.d/nginx reload
tmpdir: /tmp
hosts:
- frontend1.mydomain.com
- frontend2.mydomain.com

5

http://nginx.org/

Velociraptor, Release 4.1

One by one, here’s what those config values mean:

• my_nginx_balancer: An artbitrary name for this balancer. It will be saved with swarm records in the database.
If you change it later, you’ll have to update those records with the new name.

• user: The username to be used by Velociraptor when SSHing to the nginx hosts.

• password: The password to be used by Velociraptor when SSHing to the nginx hosts.

• include_dir: The path to a folder that nginx has been configured to use for config includes. The balancer backend
will write files there to define pools. It’s set to the Ubuntu location by default, so if you’re on that OS you can
omit this setting.

• reload_cmd: The command to be used to tell nginx to reload its config. By default this uses the command for
the Ubuntu init script.

• tmpdir: A place to put temporary files. Defaults to /tmp, so you can omit it if you don’t need to customize it.

• hosts: The list of nginx hosts whose config should be updated.

If you were to select this balancer under the swarm form’s Routing tab and provide a pool name of “my_app”, Veloci-
raptor would create a “/etc/nginx/sites-enabled/my_app.conf” file on each of the specified balancer hosts, with these
contents:

upstream my_app {
server host3.my-squad.somewhere.com:5010;
server host7.my-squad.somewhere.com:5011;

}

(The hosts and port numbers were automatically selected by Velociraptor while swarming.)

Though Velociraptor creates that nginx routing pool for you, it will not automatically create an nginx ‘server’ di-
rective mapping that pool to a publicly exposed hostname, directory, or port. You can do that in /etc/nginx/sites-
enabled/default, like this:

server{
listen 80;
server_name my-app.my-public-domain.com;
location / {
proxy_pass http://my_app;

}
}

You will only have to create that server directive the first time you swarm my_app. In subsequent swarmings, Veloci-
raptor will automatically reload the nginx config after writing the new my_app.conf file.

2.2 Varnish

Like the nginx balancer, the Varnish balancer connects to hosts over SSH in order to read/write files and run commands.
It shares a common base class with the nginx balancer, so its config is very similar:

BALANCERS:
my_varnish_balancer:
BACKEND: vr.common.balancer.varnish.VarnishBalancer
user: some_user_with_sudo
password: some_password
include_dir: /etc/varnish/
reload_cmd: /etc/init.d/varnish reload

(continues on next page)

6 Chapter 2. Balancers

https://www.varnish-cache.org/

Velociraptor, Release 4.1

(continued from previous page)

tmpdir: /tmp
hosts:
- cache1.mydomain.com
- cache2.mydomain.com

It also uses Ubuntu defaults for include_dir and reload_cmd.

2.3 Stingray/ZXTM

The balancer backend for Stingray (fka ZXTM) connects over SOAP rather than using SSH, so its config looks
different:

BALANCERS:
my_stingray_balancer:
BACKEND: vr.common.balancer.zxtm.ZXTMBalancer
URL: https://traffic.yougov.local:9090/soap
USER: api_user
PASSWORD: api_user_password
POOL_PREFIX: vr-

Those parameters are:

• URL: The URL to the SOAP interface.

• USER: username to be used for the SOAP connection.

• PASSWORD: password to be used for the SOAP connection.

• POOL_PREFIX: All pools created by Velociraptor will be prefixed with this name. This is useful if you have
both automatically- and manually-created pools.

2.4 Using Multiple Balancers:

You can use multiple balancers by having multiple entries in the BALANCERS setting:

BALANCERS:
my_varnish_balancer:
BACKEND: vr.common.balancer.varnish.VarnishBalancer
user: some_user_with_sudo
password: some_password
hosts:
- varnish.mydomain.com

my_nginx_balancer:
BACKEND: vr.common.balancer.nginx.NginxBalancer
user: some_user_with_sudo
password: some_password
hosts:
- nginx.mydomain.com

The above example includes both an nginx and varnish balancer. (It also omits the settings that have Ubuntu defaults,
so if you’re not on Ubuntu you’ll have to fill those in.)

2.3. Stingray/ZXTM 7

http://www.riverbed.com/us/products/stingray/stingray_tm.php

Velociraptor, Release 4.1

2.5 Routing Rules and Other Intentional Omissions

Load balancers/traffic managers have an eclectic and bewildering array of features, and wildly different interfaces and
config languages for driving them. Velociraptor does not attempt to provide an abstraction over all those features. The
balancer interface is concerned solely with creating and updating pools. It’s up to you to add rules telling your load
balancer which hostnames/ports/paths/etc should map to which pools.

2.6 Concurrency Caveats

When you add nodes using one of the SSH-based balancers (nginx and Varnish), it will do the following:

1. Get the current list of nodes by reading the remote balancer’s config.

2. Add the new nodes to that list.

3. Write a new config file (or files).

4. Tell the remote service to reload its config.

If two processes are both making changes at the same time, there’s opportunity for the first one’s changes to be
overwritten by the second’s.

In the nginx balancer, this risk is mitigated somewhat by use of a separate file for each pool. So you’ll only have
problems if two workers are both trying to update the same pool at the same time.

Varnish, however, does not support a glob-style include of all files in a directory as nginx does, so the Varnish balancer
maintains a pools.vcl file with include directives for all of the pool-specific files. The pools.vcl file is updated only
when new pools are created. So there is additional risk of overwritten config with the Varnish balancer if two Veloci-
raptor workers are trying to create new pools at the same time. (This is probably an extremely rare occurence, but it
will depend on the size of your Velociraptor installation.)

Additionally, if you have multiple nginx or Varnish instances configured for a balancer, there will be a few seconds of
lag between when the first and last one get their new config. (SSHing and reading/writing files takes time.)

The ZXTM/Stingray balancer does not suffer from the same concurrency risks as the SSH-based balancers, because
the underlying SOAP API provides atomic methods for add_nodes and delete_nodes.

2.7 Creating New Balancer Backends

A balancer is a Python class that implements the vr.common.balancer.Balancer interface.

Here’s a hand-wavy hypothetical example.

the abstract base class in the lib doesn't actually provide any
behavior but does help ensure you've implemented the right methods.

from vr.common.balancer import Balancer
from mythical.tightrope.api imort go_get_a_pool

class TightRopeBalancer(Balancer):
def __init__(self, config):

"""
The `config` is the dict representation of YAML config.

(continues on next page)

8 Chapter 2. Balancers

Velociraptor, Release 4.1

(continued from previous page)

For example: ::

YAML
BALANCERS:
my_tightrope_balancer:
BACKEND: deployment.balancer.tightrope.Balancer
user: some_user_with_sudo
password: some_password
hosts:
- tightrope.mydomain.com

config argument
{'user': 'some_user',
'password': 'some_password',
'hosts': ['tightrope.mydomain.com']}

"""
self.config = config

def get_nodes(self, pool_name):
"""
Find the list of nodes that exist in a pool.

Args:
- pool_name: string argument for the name of

the pool

Return a list of nodes, which are strings in the form
"hostname:port".

If the pool does not exist, this should return an empty
list.
"""
try:

pool = go_get_a_pool(pool_name)
return pool.nodes

except PoolDoesNotExist:
return []

def add_nodes(self, pool_name, nodes):
"""
Add nodes to the current pool.

Args:
- pool_name: the name of the pool as a string
- nodes: list of strings in the form "hostname:port"

If the pool does not exist, it should be automatically
created.
"""

try:
pool = go_get_a_pool(pool_name)
pool.add_nodes(nodes)

except PoolDoesNotExist:
go_create_a_pool(pool_name, nodes)

def delete_nodes(self, pool_name, nodes):
(continues on next page)

2.7. Creating New Balancer Backends 9

Velociraptor, Release 4.1

(continued from previous page)

"""
Delete a node from the pool.

Args:
- pool_name: the name of the pool as a string
- nodes: list of nodes as strings in the form "hostname:port"

This should return successfully even if the pool
or one of the nodes does not exist.
"""
try:

pool = go_get_a_pool(pool_name)
pool.delete_nodes(nodes)

except PoolDoesNotExist:
pass

Velociraptor doesn’t yet have balancer backends for Apache or HAProxy. It probably should! Patches are welcome if
you’d like to submit an additional balancer backend.

10 Chapter 2. Balancers

CHAPTER 3

Builder

Velociraptor builds apps using Heroku buildpacks. Builds are done in temporary containers where the untrusted app
and buildpack code can’t do harm to the rest of the system.

3.1 CLI

Velociraptor’s build tool is called vr.builder, and can be installed like a normal Python package:

pip install vr.builder

That package provides a ‘vbuild’ command line tool that takes two arguments:

1. A subcommand of either ‘build’ or ‘shell’.

2. The path to a yaml file that specifies the app, version, and buildpacks to be used to do the build.

Here’s an example invocation of the vbuild command:

vbuild build my_app.yaml

The vbuild tool must be run as root, as root permissions are (currently) required to launch LXC containers.

3.2 The YAML file

The yaml file given to vbuild should have the following keys

• app_name: Should be both filesystem-safe and have no dashes or spaces.

• app_repo_type: Should be either ‘git’ or ‘hg’.

• app_repo_url: The location of the app’s Git or Mercurial repository.

• version: The tag, branch, or revision hash to check out from the app repository. This must be a string. If your
version number looks like a float (e.g. 9.0) then you must enclose it in quotes to make YAML treat it as a string.

11

Velociraptor, Release 4.1

• buildpack_urls: A list of URLs to the buildpacks that are allowed to build the app. Each buildpack’s ‘detect’
script will be run against the app in order to determine which buildpack to run. If none matches, the vbuild
command will exit with an error. To specify a particular version of a buildpack, include the revision hash as the
fragment portion of the URL.

Here’s an example of a valid build yaml file:

app_name: vr_python_example
app_repo_type: hg
app_repo_url: https://github.com/btubbs/vr_python_example
buildpack_urls:
- https://github.com/heroku/heroku-buildpack-nodejs.git
- https://github.com/heroku/heroku-buildpack-scala.git
- https://github.com/yougov/yg-buildpack-python2.git
version: v3

If you know which buildpack you want you can specify it directly with the buildpack_url field:

app_name: vr_python_example
app_repo_type: hg
app_repo_url: https://github.com/btubbs/vr_python_example
buildpack_url: https://github.com/yougov/yg-buildpack-python2.git
version: v3

If you specify both a buildpack_url and a buildpack_urls list, the singular buildpack_url setting will take precedence.

When you launch a build from Velociraptor’s web interface, the build start message will include the YAML used to do
the build (click the wrench to see the dialog with the YAML). You can copy/paste this into a local YAML file and run
vbuild yourself to debug any problems with the build.

3.3 Output

When the build has completed there should be three new files in your current working directory:

• build.tar.gz will contain the compiled result of the build.

• build_result.yaml will contain metadata about the build. A build_result.yaml file can be fed back to vbuild to do
the build over again with the same versions, buildpacks, etc.

• compile.log will contain all the output from running the buildpack’s ‘compile’ script on your app. (In cases
where none of the listed buildpacks can detect your app, compile.log will not be present.)

3.4 The Shell Command and Environment

In addition to the ‘build’ subcommand, the vbuild tool provides a ‘shell’ subcommand. You run it like this:

vbuild shell my_app.yaml

The shell subcommand works with the same YAML format as the build subcommand.

If you find that a build is failing for some reason you can use ‘vbuild shell’ to get a shell in the build environment and
debug the problem. You will have exactly the same environment variables set, and the buildpacks and app code will
be checked out and mounted into your container exactly as they are at build time.

You can also run the same script that Velociraptor runs inside the container to execute the buildpack:

12 Chapter 3. Builder

Velociraptor, Release 4.1

/builder.sh /build/* /cache/buildpack_cache

Read the comments and source in builder.sh for more details.

3.5 Checkouts and Caches

The vbuild tool keeps caches and copies of repositories on the local filesystem in order to speed up compilation on
subsequent builds. All of these are kept under /apps/builder.

• Applications are kept under /apps/builder/repo, and should be identifiable by the app_name provided in the
YAML file.

• Buildpacks are kept under /apps/builder/buildpacks.

• The caches used by buildpacks are kept under /apps/builder/cache

In all cases, folder names will be appended with an MD5 hash of the app’s or buildpack’s URL. This avoids collisions
when two apps or buildpacks use the same name.

It is safe to delete the app repos, buildpacks, or caches saved by vbuild. The vbuild tool will re-download any repos-
itories or re-create any directories it needs. Deletion of buildpack caches in particular is sometimes necessary if a
buildpack gets a cache into a weird state.

3.5. Checkouts and Caches 13

Velociraptor, Release 4.1

14 Chapter 3. Builder

CHAPTER 4

Containers

Velociraptor apps are deployed to LXC containers that give them an isolated process space and filesystem root. One
way to think of them is “virtual machines that share a kernel with the host”. Another way to think of them is “chroot
on steroids”.

At the time of writing (May 2013) Velociraptor’s LXC containers are only minimally isolated. Though apps cannot
see each other’s code or config, essential system folders are bind-mounted from the host into the container and shared
between apps. The host’s network interface is shared inside the container. There are no caps on per proc resource
usage (which LXC supports using Linux cgroups). As development continues, Velociraptor’s containers will be made
more isolated and secure. For now you should not run untrusted 3rd party code on Velociraptor.

The use of containers enforces the 12 Factor App rules that require state to be maintained in backing services
(databases, caches, etc.) rather than on the application host. Any local files written by an app are likely to be deleted
when the app is restarted, and certain to be deleted when a different release of the app is dispatched.

15

http://linuxcontainers.org

Velociraptor, Release 4.1

16 Chapter 4. Containers

CHAPTER 5

Runners

When you deploy an application with Velociraptor, it runs in a container. Those containers are set up and launched by
a ‘runner’, which is a small command line application on the application host.

You can do some neat things using runners:

• Run a container on one host that will uptest a proc on another host (by setting the ‘host’ and ‘port’ keys in your
local proc.yaml appropriately).

• Get a shell on a production host in the exact same environment in which your production instance is running.

• Easily start up a local instance of a proc that exactly matches what’s running production.

The interface between Velociraptor and its runners is specified in terms of command line arguments and a yaml file.

A runner is launched with two command line arguments:

1. A command. (‘setup’, ‘run’, ‘uptest’, ‘teardown’, or ‘shell’)

2. The path to a proc.yaml file containing all the information necessary to set up the container with the application’s
build and config.

Using the ‘setup’ command might look like this:

some_runner setup /home/dave/myproc.yaml

5.1 The proc.yaml file

The proc.yaml file contains the following keys:

• port: The network port on which the application should listen, if applicable.

• user: The name of the user account under which the application should be run. The application’s files will have
their owner set to this user.

• group: The application’s files will have their group set to this.

17

Velociraptor, Release 4.1

• env: A dictionary of environment variables to be set before launching the application. Values beginning with
“$” will be substituted with the corresponding environment variable during deployment.

• settings: A dictionary of config values to be written to settings.yaml inside the container. The location of that
file will be passed to the application using the APP_SETTINGS_YAML environment variable.

• cmd OR proc_name: If there is a ‘cmd’ key in proc.yaml, it will be used as the command to launch inside the
container. If there is no ‘cmd’ key, then the ‘proc_name’ key should have an entry like ‘web’ or ‘worker’ that
points to a line in the application’s Procfile.

• build_url: The HTTP URL of the build tarball.

• build_md5: Optional. If supplied, and the runner sees that the build tarball has already been downloaded, its
md5sum will be checked against build_md5 from the proc.yaml.

The file doesn’t actually have to be named proc.yaml. It can have any name you like.

Note: String config values that start with an @ sign and also contain single quote characters get serialized in a special
way by the underlying YAML library. For instance, “@How’s it going?” gets serialized as ‘@How”s it going?’.

5.2 Commands

Runners support the following commands:

5.2.1 Setup

Example:

some_runner setup /home/dave/myproc.yaml

The setup command will read the proc.yaml file, download the build (if necessary), and create necessary scripts,
directories and LXC config files for the container.

If proc.yaml contains a ‘cmd’ key, this will be written into the startup script created during setup. If there is no
‘cmd’ key, the runner will use the ‘proc_name’ key to determine which line from the application’s Procfile should be
executed.

This command locks the proc.yaml file so other locking runner commands cannot run on this file at the same time.

5.2.2 Teardown

Example:

some_runner teardown /home/dave/myproc.yaml

The teardown command should remove the proc folder and related files from the filesystem. If the runner has done
other changes to the host, such as creating special network interfaces for the container, it should clean those up too.

Note: It is permissible for teardown to leave a copy of the build tarball in /apps/builds even after teardown is called.
(There’s no way for teardown to know whether you have other containers based on the same build.)

The teardown command locks the proc.yaml file while running.

18 Chapter 5. Runners

mailto:'@How''s

Velociraptor, Release 4.1

5.2.3 Run

Example:

some_runner run /home/dave/myproc.yaml

The run command starts your process inside the container. The process should not daemonize. When the process
exists, the container will stop with it.

The run command locks the proc.yaml while running.

5.2.4 Uptest

Example:

some_runner uptest /home/dave/myproc.yaml

The uptest command relies on the presence of a proc_name key in proc.yaml. It looks for any scripts in
<app_dir>/uptests/<proc_name> and will execute each one, passing host and port on the command line (as speci-
fied in the uptests spec). The host and port settings passed to the uptests will be pulled from the host and port keys in
the proc.yaml.

The results from the uptests will be written to stdout as a JSON array of objects (one object for each uptest result).
The uptest command must not emit any other output besides the JSON results.

Uptests should be run in an environment identical to the proc being tested (same os, build, settings, environment
variables, etc.).

The uptest command does not lock the proc.yaml while running.

5.2.5 Shell

Example:

some_runner shell /home/dave/myproc.yaml

The shell command creates and starts a container identical to the one running for the proc, but starts /bin/bash in it
instead of the proc’s command. This is useful for debugging pesky problems that only seem to show up in production.

The shell command does not lock the proc.yaml while running.

5.3 Commands

5.3.1 vrun

The vrun runner supports specifying an OS image tarball to be used inside the container. It uses the following
additional keys in proc.yaml:

• image_name: This should be a filesystem-safe name for the image to be used in the container. Example: ubuntu-
core-12.04.3-amd64

• image_url: An http URL from which the image tarball can be downloaded.

• image_md5 (optional): If provided, this checksum will be used to determine whether an already-downloaded
tarball is correct. If there’s a mismatch, the image will be re-downloaded.

5.3. Commands 19

Velociraptor, Release 4.1

Here’s a working example of those three proc.yaml lines:

image_url: http://cdimage.ubuntu.com/ubuntu-core/releases/12.04/release/ubuntu-core-
→˓12.04.3-core-amd64.tar.gz
image_md5: ea978e31902dfbf4fc0dac5863d77988
image_name: ubuntu-core-12.04.3-amd64

(That Ubuntu core image is only 34MB!)

Image tarballs must be compressed with either gzip or bzip2 compression, and use the appropriate extension in their
filenames.

The vrun runner uses an overlayfs mount of the unpacked build inside each container, so the same image can be used
by many containers without using any more disk space.

Other runner implementations may be added in the future, or created as separate projects.

20 Chapter 5. Runners

CHAPTER 6

Stacks

Velociraptor’s concept of a “stack” is more or less the same as Heroku’s:

A stack is a complete deployment environment including the base operating
system, the language runtime and associated libraries. As a result,
different stacks support different runtime environments.

6.1 OS Images are to Stacks as Builds are to Apps

Unlike Heroku, Velociraptor lets you create your own stacks, and provides tools to make it fairly simple. When using
the Velociraptor UI, you can select Platform -> Stacks from the menu. To create a new stack, you will need to provide
the URL for a base image tarball and a script to run inside the base image to install the things you need. Put those
pieces of information in the form and click “Save and Build”. Velociraptor will tell one of its workers to do the
following:

1. Download your base image and unzip it.

2. Start a container with your base image mounted in read/write mode.

3. Run your provisioning script inside the container.

4. Once the provisioning script is finished, tar up the result and save it to Velociraptor’s file store.

After those steps are complete, you should be to go to Platform -> Apps, create a new application or select an existing
one, and link it to your stack. When you next build the app, the build will occur inside your newly built OS image.
When you deploy the app, the image will be downloaded and unpacked just like the build is.

In time you may realize that you want to change something in the OS image. Maybe you need to add a system-level
package, or maybe there’s an urgent security fix. You should modify your provisioning script to make the desired
change, edit your stack in the Velociraptor UI, upload your new script, and click “Save and Build” as you did before.
When your image is done building, it will be marked as the ‘active’ build in the stack, and will be used for all builds
and swarms of your app.

21

https://devcenter.heroku.com/articles/stack

Velociraptor, Release 4.1

6.2 Base Images

Velociraptor needs a base image as a starting point. You can use an existing tarball provided by a Linux distribution.
Ubuntu’s website provides minimal base images that you can use.

But!

There is a bug in stock Ubuntu 14.04 (Trusty) and CentOS 6.5 images that makes them essentially unusable in con-
tainers, unless you disable PAM audit signals. Some kind souls have implemented that workaround for Docker im-
ages, and it works for Velociraptor as well. There is a Velociraptor-compatible base image for Ubuntu Trusty at
http://cdn.yougov.com/build/ubuntu_trusty_pamfix.tar.gz.

Additionally, any Docker image can be made into a Velociraptor image by doing docker export and gzipping the result.

6.3 Provisioning Scripts

The only requirement on provisioning scripts is that they be executable, but it’s recommended that you write them in
Bash.

The cedarish open source project provides a provisioning script that can be used to make a Heroku-compatible image.

6.4 Using vimage

Most Velociraptor functions have both a high level graphical user interface and a lower level command line interface.
OS images are no exception. The vr.imager Python package is used by the Velociraptor server to build OS images,
and you can easily use it from the command line yourself.

These commands require that you run as root on a Linux host with LXC installed.

Install vr.imager:

pip install vr.imager

Create a file named my_image.yaml with contents like this:

base_image_url: http://cdn.yougov.com/build/ubuntu_trusty_pamfix.tar.gz
base_image_name: ubuntu_trusty_pamfix
new_image_name: my_awesome_image_20141031
script_url: /path/to/my_provisioning_script.sh
env:

PATH: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

(As you may have guessed, any of the “_url” fields in that YAML file may be given either an http url or a local file
path.)

Tell vimage to build it:

vimage build my_image.yaml

You should see all the steps in your provisioning script get executed in your terminal. When it’s all done, you should
have two new files in your current directory:

22 Chapter 6. Stacks

http://cdimage.ubuntu.com/ubuntu-core/trusty/daily/current/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/patch/?id=543bc6a1a987672b79d6ebe8e2ab10471d8f1047
https://github.com/sequenceiq/docker-pam
http://cdn.yougov.com/build/ubuntu_trusty_pamfix.tar.gz
http://docs.docker.com/reference/commandline/cli/#export
https://github.com/progrium/cedarish/blob/master/stack/cedar-14.sh

Velociraptor, Release 4.1

root@vagrant-ubuntu-trusty-64:~# ls -1
my_awesome_image_20141031.log
my_awesome_image_20141031.tar.gz
my_image.yaml

If something goes wrong while running your provisioning script, you might want to get into the container and debug
interactively. You can do so like this:

vimage shell my_image.yaml

6.4. Using vimage 23

Velociraptor, Release 4.1

24 Chapter 6. Stacks

CHAPTER 7

Supervisor is Awesome

Velociraptor relies heavily on Supervisor to manage processes. It calls Supervisor’s XML RPC interface in order stop
and start things, and to report on which processes are running on which hosts. You should make sure you have the
XML RPC interface enabled in supervisord.conf:

[inet_http_server]
port = *:9001
username = fakeuser
password = fakepassword

See the Supervisor docs for how to configure this section, including an option for including a SHA1 hash of a password
instead of plaintext.

7.1 The Velociraptor Event Listener

Velociraptor includes a Supervisor event listener plugin to watch for any changes in process state and put a message
on a Redis pubsub when they happen. The Velociraptor web interface relies on these messages to stay up to date.

You’ll need to install the ‘vr.agent’ package on each of your hosts and configure Supervisor to start the ‘proc_publisher’
event plugin, as shown in this sample supervisord.conf snippet:

[eventlistener:proc_publisher]
command=proc_publisher
events=PROCESS_STATE,PROCESS_GROUP,TICK_60
environment=REDIS_URL="redis://localhost:6379/0",HOSTNAME=precise64

command

The ‘command’ parameter here should point to the proc_publisher script installed by the vr.agent package.

events

Here you configure the events that Supervisor should send to the plugin. Set it as above.

environment

25

http://supervisord.org/
http://supervisord.org/events.html

Velociraptor, Release 4.1

Here you set environment variables to be passed in to the event plugin process. The REDIS_URL variable must be set
in order for the plugin to know where to post events.

The HOSTNAME variable is optional. If provided, it will be the hostname included in messages placed on the Redis
pubsub. If not provided, the event plugin will guess a hostname by calling Python’s “socket.getfqdn()” function. You
should set the HOSTNAME variable if the name used in your Velociraptor web interface isn’t the same as the one
returned by socket.getfqdn(). If they don’t match, and you don’t set HOSTNAME, you’ll see duplicate procs on your
dashboard.

7.2 Version

Supervisor 3.1.0 or later is required for the event listener support that Velociraptor needs.

26 Chapter 7. Supervisor is Awesome

CHAPTER 8

Uptests

Uptests are an essential part of Velociraptor’s promise of zero-downtime deployment. The idea is that a deployment
should look like this:

1. You have some instances of your app already deployed, but you want to update the code or config.

2. You deploy new instances with the new code or config, while leaving the old instances up and still handling
traffic. The new instances don’t handle any traffic yet.

3. You run tests on the new instances to ensure that they’re running happily and ready to serve traffic.

4. If the tests pass, then you change your routing rules to serve traffic from the new instances instead of the old
ones.

5. Finally, you take down the old instances.

Velociraptor automates all of the above steps when you swarm. All you have to do as a developer is include some
uptests.

8.1 Definition

An uptest is a small script or program that checks whether a single instance of an app is running correctly.

8.2 Running

Uptests scripts must be executable files. They accept two command line arguments: “host” and “port”. Uptests are run
in an environment identical to production (same build, same environment variables), but not necessarily on the same
host as the proc being tested. The uptest should exercise the designated proc in some way to check whether it’s ready
to accept production traffic.

27

Velociraptor, Release 4.1

8.3 Results

If successful, the uptest script must exit with status code 0. Any other exit code signifies a failure. The script may emit
debug information to stdout or stderr.

8.4 Organization

Uptests live in your app’s source code repo. Each proc in an app has different uptests, organized by subfolders of an
‘uptests’ folder in the project root. In the example below, the web proc has 3 uptests, which will be executed in the
order listed by the OS.

|
+-- Procfile
|
+-- README.rst
|
+-- uptests/

|
+-- web/

|
+-- 01_its_alive.py
|
+-- 02_login_required.py
|
+-- 03_check_rss.py

8.5 What to Test

Uptests do not replace the unit or functional tests that you write in the course of normal development. You still need
those!

Uptests should test what those other tests can’t:

• They can let you know if the production version pulled in a different (and buggy) dependency than staging.

• They can tell you if there’s some system level dependency that’s not met in production.

• They can catch fat finger errors you made when typing in config values like the location of your production
database.

At minimum you should have an uptest that pings your app to check whether it’s running. More robust uptests will
check things like whether all the app’s backing services are also up.

It is not recommended that uptests make any persistent changes. They shouldn’t create or delete records.

8.6 You Will Love Uptests

Uptests make it safe(r) to deploy your code a dozen times a day if you need to. If you take the time to write some now,
your future self will thank you when you save him or her from bringing the whole site down because of some stupid
slip.

28 Chapter 8. Uptests

CHAPTER 9

Volumes

Velociraptor’s volumes feature allows you to specify one or more directories on the host to be mounted inside the
container.

9.1 Caution

The volumes feature is a departure from Velociraptor’s normal requirement that applications be completely stateless
(i.e. 12 Factor-compliant). With volumes, applications may maintain some state between deployments by reading
from and writing to persistent files on the local disk.

9.2 Configuration

Volumes are specified in the user interface by entering YAML configuration into the Swarm or Release forms. In both
cases, the YAML should be a list of host dir, mountpoint pairs:

- [/var/data, /data]

In that example, the host’s /var/data folder will be mounted inside the application’s container at /data.

You may specify multiple volumes for a container:

- [/var/data, /data]
- [/blahblah/cache, /cache]

Because YAML supports multiple ways of encoding the same structure, you are likely to see notation different from
the above when viewing volumes in the UI. This format is equivalent to the above:

- - /var/data
- /data

- - /blahblah/cache
- /cache

29

http://12factor.net/

Velociraptor, Release 4.1

9.3 Permissions

Volumes are implemented using bind mounts written into the proc’s LXC container configuration. They will not
automatically modify any permissions on the files in the volume in order to make them readable or writable by your
application. It is up to you to ensure that the permissions are appropriately set, and then use the ‘Run as’ field in the
Swarm and Release forms to make your application run as the right user.

30 Chapter 9. Volumes

http://docs.1h.com/Bind_mounts

CHAPTER 10

Deploying Velociraptor

This page serves as a placeholder for instructions and advice on deploying Velociraptor in a production environment.

10.1 Setting Memory Limits

In order to support the memory limits on containers, the host kernel must be configured with one or both of the
following command-line parameters:

swapaccount=1 cgroup_enable=memory

Please update this document if you can provide clarification on which parameters are actually required and how to
specify those parameters.

10.2 Monitoring with Flower

As Velociraptor uses celery queues to manage its tasks, it’s often useful to have a tool for monitoring them. The Flower
project implements one such tool.

To deploy it against your broker, add a proc to your VR Procfile like so:

flower: python -m vr.server.manage celery flower --broker=$BROKER --port=$PORT

Add the flower dependency in your requirements.txt (alongside other VR dependencies):

Flower =>0.9, <1

And deploy that proc using VR. You’ll then have a web service configured to monitor Celery.

31

http://flower.readthedocs.io/en/latest/
http://flower.readthedocs.io/en/latest/

Velociraptor, Release 4.1

32 Chapter 10. Deploying Velociraptor

CHAPTER 11

Administration

In the process of deploying apps into real-world systems, there are cases where actions in the UI can lead to surprising
outcomes due to limitations that Velociraptor sets for itself in managing the systems.

This section provides some guidance on common admininstrative scenarios.

11.1 Deploying Workers

Workers are not part of a swarm, as they do not bind to a port and must be specifically installed one per host. Also,
workers can’t be easily deployed without a working worker. Therefore, deploying workers takes special care.

First, swarm another process to the desired version. It could be the beat proc or web proc or another, but it should be
using the same configuration as the workers use. After it’s built properly, that will have created a release.

Next, manually stop one of your workers. Note the ‘config’ name of the worker. Then do a manual deploy step
(Actions > Deploy), select the release that was just created (should be the first one in the list). Select ‘worker’ for the
proc and give the config the same name as noted previously. Finally, select the same host as the stopped worker and a
port of 0 and submit.

The proc should deploy and turn green and start completing tasks. Next, repeat the steps for the remaining workers.

After you’re done, you’ll have a new set of workers running and the old workers stopped. Additionally, if the last
worker deploy worked, that worker would have been deployed using one of the new running workers, so you have
some confidence that it’s functional, so it’s safe now to destroy the old workers.

11.2 When a Squad Loses a Host

When a squad unexpectedly loses a host (or hosts), not only do all of the procs on that host cease to function, but
also the supervisor will not respond to requests. At the time of this writing, that causes the dashboard to become
unresponsive. . . at a time when the administrators desperately need the dashboard.

33

https://bitbucket.org/yougov/velociraptor/issues/90
https://bitbucket.org/yougov/velociraptor/issues/90

Velociraptor, Release 4.1

VR doesn’t yet have a UI for deleting members of a squad, so use the Django admin. Navigate manually to /ad-
min/squads, select the affected squad, then check the delete box for each failing host then click save. Repeat for
additional squads if necessary.

Dependening on how many hosts died and how much slack you have on the other hosts, you may need to provision
replacement hosts. If so, create the hosts using whatever technique you use to provision hosts, and then add those hosts
using the VR UI by browsing to /host/add/, entering the FQDN of the host, and selecting the target squad in which it
should be added. Repeat for each supplemental host needed.

Now your environment should be responsive and ready to recover your failed procs. Since VR does not keep a record
of which procs are offline, your best option is to dispatch all swarms in the affected squad or squads. Any swarms
that are already complete will be quickly fulfilled, and only those not matching the running configuration will be
re-deployed and re-routed.

To identify the relevant swarms, there’s no UI that will accomplish this for you. You must go to the database, find the
relevant squad, and then query for swarms pointing to that squad. If that’s too much trouble, you can consider simply
dispatching all swarms, which you can list with the CLI:

$ vr.cli list-swarms '.*'
swarm1-config1-runner
swarm2-config2-runner
...

Once you have the list of swarms, you can readily dispatch each of those using the same version that was last indicated:

$ export RELEVANT_SWARM_PATTERN="swarm1-config1-runner|swarm2-config2-runner|..."
$ vr.cli swarm "$RELEVANT_SWARM_PATTERN" -

Important is the last ‘-‘ character, which is the version to dispatch. The dash simply indicates use the current version.

The CLI will then dispatch each of the indicated swarms, getting all the procs back to production levels.

11.3 Proc Supervisor

Velociraptor delegates the process supervision to Supervisor. As a result, procs in the UI may not have been deployed
by VR, but could have been deployed manually. Regardless of how a proc came to exist in supervisor, it is displayed
in the UI.

11.4 Defunct Procs

Although Velociraptor will tear down procs within the same swarm when they are no longer needed for that swarm, if
the definition of the swarm changes, Velociraptor will no longer recognize the extant procs from a previous manifes-
tation of a particular swarm.

For example, if one has a swarm for MyApp, but then changes the Application to be MyAppNG, Velociraptor will
deploy new procs to service a swarm called MyAppNG-{ver}-{config}, but it will do nothing to eliminate the MyApp-
{ver}-{config}. It will, if configured, update the routing to point to the new app, giving the desired behavior, i.e. that
MyAppNG is the exposed service, but the rogue procs will continue to run.

It is unclear at this time if those rogue procs are recognized as consuming a port in Velociraptor’s port accounting.

This condition can happen when mutating any of the following Swarm fields:

• App

• Proc name

34 Chapter 11. Administration

Velociraptor, Release 4.1

• Config name

• Squad

Therefore, to avoid leaving rogue procs lying around, it is recommended that one of the following techniques be
followed to clean up the orphaned procs:

• Manually delete them using the UI or CLI.

• Create another swarm matching the original and dispatch it with a size of 0.

• Before making the change, first dispatch the swarm with a size of 0 (this will result in downtime).

• Re-use the mutated swarm by mutating it back but also clear the routing fields (so that routing is not affected)
and with a size of 0. Then, restore the desired settings in the swarm.

11.4. Defunct Procs 35

Velociraptor, Release 4.1

36 Chapter 11. Administration

CHAPTER 12

Development

12.1 VM

The smoothest way to get running is to start up a VM with the included Vagrantfile. This requires having VirtualBox
and Vagrant installed. Go do that now.

You’ll need a local clone of the Velociraptor repo:

git clone --recursive https://github.com/yougov/velociraptor

Now launch vagrant:

cd velociraptor
vagrant up

Now go make a sandwich while you wait for the Ubuntu Trusty VM image to download (about 430MB).

Installation of system-level dependencies inside the VM is done automatically using Vagrant’s Puppet provisioner.
This includes some normal apt packages, (curl, Vim, Postgres), and some installed with pip (Mercurial and Virtualenv).
You can see the Puppet manifest at puppet/manifests/vr.pp.

The first time you ‘vagrant up’, the Puppet provisioning could take about 5 minutes. It will be faster on later startups,
since most packages will already be installed.

Once the image is all downloaded and Puppet has run, log in with:

vagrant ssh

You’re now inside your new Vagrant VM! The Velociraptor repo will be at /vagrant. Now make a Python virtualenv
for yourself. It will use Python 2.7 by default. Virtualenvwrapper is pre-installed to make this extra easy:

mkvirtualenv velo

37

http://www.virtualbox.org/wiki/Downloads
http://vagrantup.com/v1/docs/getting-started/index.html
http://www.doughellmann.com/docs/virtualenvwrapper/

Velociraptor, Release 4.1

12.2 Python Dependencies

Velociraptor contains a dev_requirements.txt file listing its dev-time Python dependencies. You can install the depen-
dencies with this:

cd /vagrant
pip install -r dev_requirements.txt

12.3 Database

There is a dbsetup.sql file included that contains commands for creating the Postgres database used by Velociraptor:

psql -U postgres -f dbsetup.sql

Once your database is created, you’ll need to create the tables:

python -m vr.server.manage syncdb --noinput
python -m vr.server.manage loaddata bootstrap.json

The schema is created with an initial user admin with password password.

As Velociraptor is developed and the DB schema changes, you can run python -m vr.server.manage migrate again to
get your local DB schema in sync with the code.

12.4 Dev Server

The Velociraptor server is composed of three processes:

1. The main Django web service.

2. A Celery daemon that starts and controls one or more workers.

3. A ‘celerybeat’ process that puts maintenance jobs on the Celery queue at preconfigured times.

There is a Procfile included with Velociraptor that can be used to run a development environment with these processes.
You can use Foreman to read the Procfile and start the processes it lists:

foreman start -f Procfile.dev

That will start the Django dev server on port 8000, the Celery workers, and the celerybeat process.

Now open your web browser and type in http://localhost:8000. You should see Velociraptor. (The Vagrantfile is
configured to forward ports 8000, 9001, and 5000-5009 to the VM. If you need these ports back for other development,
you can stop your Vagrant VM with a vagrant halt.)

12.5 Add Metadata

12.5.1 Buildpacks

In order to build and deploy your apps, Velociraptor needs to be told where they are and how to build them. The
‘how to build them’ part is done with Heroku buildpacks. Go to http://localhost:8000/buildpack/add/ in your browser
in order to add a buildpack. You will need to enter the git (or mercurial) repository URL, as well as an integer for

38 Chapter 12. Development

http://celeryproject.org/
http://ddollar.github.com/foreman/
http://localhost:8000
http://localhost:8000/buildpack/add/

Velociraptor, Release 4.1

the ‘order’. See the Heroku buildpack documentation to understand more about how buildpacks work and why order
matters. For now, just add a single buildpack, and set its order to ‘0’. A good one to start is the NodeJS buildpack.

12.5.2 Squads and Hosts

In order for Velociraptor to know where to deploy an application, it requires some hostnames. Velociraptor does
load balanced deployments across a group of hosts called a “Squad”. Go to http://localhost:8000/squad/add/ to create
a new squad. Call it whatever you like (I suggest ‘local’). Squad names must be unique. Then add a host; go to
http://localhost:8000/host/add/ and give the squad a host named ‘vr-master’, which is the hostname of the Vagrant VM
itself.

12.5.3 Stacks and Images

Velociraptor uses a container based system for isolating the execution environments of each application.

A “legacy” stack is provided but deprecated.

Instead, create a trusty stack. Use the base trusty image per docs. http://cdn.yougov.com/build/ubuntu_trusty_pamfix.
tar.gz

Provision the stack with the ‘provision.sh’ file from the Velociraptor repository. You must also provide name and
description. Use “trusty” for both.

The provisioning script takes some time as it needs to download, expand, and mount the base image, run the provision-
ing script in a container for that image, collect the image back into an archive, and upload the image to the Velociraptor
image repository.

Watch the “worker” log for progress and wait for a green cube icon in the UI. The process takes most of 20 minutes.

12.5.4 Apps

Now tell Velociraptor about your code! Go to http://localhost:8000/app/add/ and give the name, repo url, and repo
type (git or hg) of your application. If you don’t have one around, try the vr_node_example app. The name you give
to your app should have only letters, numbers, and underscores (no dashes or spaces).

You can leave the ‘buildpack’ field blank. Velociraptor will use the buildpacks’ built-in ‘detect’ feature to determine
which buildpack to use on your app.

Select “trusty” for the stack.

12.5.5 Swarms

Swarms are where Velociraptor all comes together. A swarm is a group of processes all running the same code and
config, and load balanced across one or more hosts. Go to http://localhost:8000/swarm/ to create yours. Here’s what
all the form fields mean:

• App: Select your app from this drop down.

• Tag: This is where you set the version of the code that Velociraptor should check out and build. You can
use almost any tag, branch name, bookmark, or revision hash from your version control system (any valid ‘git
checkout’ or ‘hg update’ target), as long as it does not contain invalid characters for use in file names/directory
names (most notably, /). Use ‘v5’ for the vr_node_example.

• Proc name: The name of the proc that you want to run in this swarm (from the Procfile). Type in ‘web’ for
vr_node_example.

12.5. Add Metadata 39

https://devcenter.heroku.com/articles/buildpacks
https://github.com/heroku/heroku-buildpack-nodejs.git
http://localhost:8000/squad/add/
http://localhost:8000/host/add/
http://cdn.yougov.com/build/ubuntu_trusty_pamfix.tar.gz
http://cdn.yougov.com/build/ubuntu_trusty_pamfix.tar.gz
http://localhost:8000/app/add/
https://bitbucket.org/btubbs/vr_node_example
http://localhost:8000/swarm/

Velociraptor, Release 4.1

• Config Name: This is a short name like ‘prod’ or ‘europe’ to distinguish between deployments of the same app.
Must be filesystem-safe, with no dashes or spaces. Use ‘demo’ here for vr_node_example.

• Squad: Here you declare which group of hosts this swarm should run on. If you set up the squad as indicated
earlier in this walkthrough, you should be able to select ‘local’ here.

• Size: The number of procs to put in the swarm. Try 2 for now.

• Config YAML: Here you can enter optional YAML text that will be written to the remote host when your app
is deployed. Your app can find the location of this YAML file from the APP_SETTINGS_YAML environment
variable.

• Env YAML: Here you can enter YAML text to specify additional environment variables to be passed in to your
app.

• Pool: If your app accepts requests over a network, you can use this “pool” field to tell your load balancer what
name to use for the routing pool. By default Velociraptor talks only to an in memory stub balancer called
“Dummy”. For the walkthrough, leave this field blank. To configure a real load balancer, see docs/balancers.rst
in the Velociraptor repo. Velociraptor supports nginx, Varnish, and Stingray load balancers. This interface is
pluggable, so you can also create your own.

• Balancer: Here you select which balancer should be told to route traffic to your swarm. For the walkthrough,
leave this field blank.

Now click Swarm. Velociraptor will start a series of worker tasks to check out the buildpack, check out your code,
download the image, compile your code in the image, save the resulting build, push it out to the hosts in the squad
along with any config you’ve specified, and launch the code within the stack image. The Swarm Flow diagram in the
docs folder illustrates the process.

12.6 Tests

Run the tests with py.test from the root of the repo after installing the dev requirements:

cd /vagrant
pip install -r dev_requirements.txt
py.test

The tests will automatically set up and use separate databases from the default development ones.

While developing, you might want to speed up tests by skipping the database creation (and just re-using the database
from the last run). You can do so like this:

py.test --nodb

This should be safe as long as we keep using randomly-generated usernames, etc., inside tests.

12.7 Editing Code

Running the code inside a VM does not mean that you need to do your editing there. Since the project repo is mounted
inside the VM, you can do your editing on the outside with your regular tools, and the code running on the inside will
stay in sync.

40 Chapter 12. Development

http://wiki.nginx.org/Main
https://www.varnish-cache.org/
http://www.riverbed.com/products-solutions/products/application-delivery-stingray/

Velociraptor, Release 4.1

12.8 UI

All frontend interfaces rely on a ‘VR’ javascript object defined in deployment/static/js/vr.js. Individual pages add their
own sub-namespaces like VR.Dash and VR.Squad, using vrdash.js and vrsquad.js, for example.

Velociraptor uses goatee.js templates (a Django-friendly fork of mustache.js). They are defined as HTML script blocks
with type “text/goatee”.

Velociraptor makes liberal use of jQuery, Backbone, and Underscore.

12.9 Repositories (and Submodules)

Velociraptor is a suite of projects in the vr namespace. Each of these projects are a separate repository, linked by the
parent repository https://github.com/yougov/velociraptor using git submodules.

If you’re committing to the project, you’ll want to first configure the parent repository to automatically push commits
in subrepos referenced by the parent:

$ git config push.recurseSubmodules on-demand

12.8. UI 41

https://github.com/btubbs/goatee.js
https://github.com/janl/mustache.js
http://jquery.com/
http://backbonejs.org/
http://underscorejs.org/
https://github.com/yougov/velociraptor
https://git-scm.com/book/en/v2/Git-Tools-Submodules

Velociraptor, Release 4.1

42 Chapter 12. Development

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

43

	Overview
	Balancers
	Builder
	Containers
	Runners
	Stacks
	Supervisor is Awesome
	Uptests
	Volumes
	Deploying Velociraptor
	Administration
	Development
	Indices and tables

